分类
期貨市場

多种交易工具

汽车云,自动驾驶的隐秘战场

多种交易工具

广州

汽车云,自动驾驶的隐秘战场

8 月 2 日,小鹏汽车宣布建成国内最大的自动驾驶智算中心「扶摇」,专用于自动驾驶模型训练。

据何小鹏介绍,「扶摇」是为了处理自动驾驶越来越大的数据量,具备 60 亿亿次浮点运算能力。

在此之前,特斯拉也发布了用于训练神经网络的超级计算机 Dojo,浮点运算能力达到了 exaflop 级别,即每秒百亿亿次运算,被马斯克称为「如野兽一般」。

正巧此时,由安永(中国)企业咨询有限公司(下简称「安永」)和华为智能汽车解决方案 BU 共同编写的《智能汽车云服务白皮书》发布,里面深入分析了云的数据赋能和业务赋能能力,并根据行业痛点以及企业发展阶段,探讨车企和云服务商应该如何进行合作,助力自动驾驶研发与持续升级。

01、海量数据时代,「上云」是必由之路

现在无论是风头正盛的造车新势力,还是高举高打的 L4 级自动驾驶公司,抑或是正大力转型智能化的传统车企,都在争分夺秒地将自动驾驶功能上车,以期实现量产应用。

与此同时,挑战随之而来。自动驾驶时代,车端数据量指数级上升,由于需要借助激光雷达、摄像头等各种传感器「观察」道路,根据 Garner 估计,每一部自动驾驶联网车辆每天至少产生 4TB 数据,而当车企销售出数十万,甚至上百万的自动驾驶车辆时,其数据量将是从 PB 级ZB 级的增长,十分消耗车企在数据获取、存储和计算上的资源。

由于测试车辆规模不大,传统的数据中心足以应对。甚至在一些 Robotaxi 公司,仅用最原始的「硬盘拷贝」方式,回传全量数据,然后再进行数据挖掘

而到了量产阶段,接入的车辆数、产生的数据量大幅提升,训练和并行仿真对 GPU 多种交易工具 算力要求陡然增大,传统数据中心难堪重负。

对此,部分车企开始寻求变革。有消息称,某一外资新势力车企已自建超算中心,用来挖掘海量冗余数据,从成本上来说,可谓是投入不菲:仅硬件耗资就高达 1.4 亿美元。

上云是自动驾驶从开发到商用的必由之路。」在安永和华为智能汽车解决方案 BU 共同编写《智能汽车云服务白皮书》(以下简称《白皮书》)中,旗帜鲜明地提出了这一观点。

据了解,基于云服务的方式,通过对多元算力的支持,可满足车企在自动驾驶开发过程中,模型训练和并行仿真对海量基础设施资源极致算力、安全可靠和弹性灵活的业务需求,且相比传统数据中心,可以有效提升 60% 以上的运维运营效率,并降低 30~60% 的 TCO(总拥有成本)。

02、不止于效率工具,更是一场自动驾驶革命

一个完整的自动驾驶系统闭环由感知规划决策构成,其中感知和规划构成了数据生成的主要部分,包括数据采集数据清洗数据标注仿真测试

要知道,自动驾驶系统采集的内容类别繁多,包括视频、图像、激光点云、雷达点云等,除了数据量大,更显著的特点是,价值数据占比低,无关和无价值信息占用了极大存储空间。

「在需要云端主动搜集积累数据进行学习的场景,例如通过隧道、遭遇电动二轮车,可以让开发人员上传需要车辆获取的图片,通过云端下发指令,车端会采取类似『以图搜图』的方式,将类似场景自动截取下来。这样可避免上传整段数据,而只需要把打过标签的『有价值』数据筛选出来上传到云端即可,大大提升了 Corner Case 挖掘的效率。」一位汽车云服务商内部人士向汽车之心介绍道。

在挖掘到价值数据后,接下来是对数据进行清洗和标注。简单而言,数据清洗就是擦除车端采集的敏感数据,由于其中包含地理位置、人脸、车牌等涉及国家安全和隐私的信息,必须进行脱敏合规处理,并统一格式,而数据标注则是对清洗后的数据进一步加工,大致分为 2D、3D 目标物标注、联合标注、车道线标注和语义分割等。

无论是数据清洗还是数据标注,都需要大量的人力劳动参与。经过这种方式处理的数据质量质量参差不齐、返工率高,且效率十分低下。即便后来车企慢慢引入本地 AI 训练数据处理,较人工处理提升并不大。

国内某科技龙头公司在标注工作中,就投入了超 100 多种交易工具 人的团队,发现依靠人工进行标注的工作量占机器学习的比例极高,且耗时耗力,作业效率还难以提高。

《白皮书》中提到,汽车云高算力结合智能策略,综合数据处理效率提升 10 倍以上,数据处理成本较人工降低 50%。

按照业内的普遍说法,自动驾驶系统要走向成熟,需要至少 100 亿英里的试驾数据。这对于任何车企来说,仅仅依靠实车路测,都是不可能完成的任务,因此仿真测试成为了一条必经之路。

03、车企研发之痛,呼唤专业汽车云赋能业务

不少车企已经认识到云服务对于自动驾驶的重要性,相应的投入正在快速上升,有数据显示,2020 年,车企在该领域的投入占到整体汽车数字化投入的 60% 以上。

不过,车企上云的方式各有不同,大体可分为两类:自建私有云采购公有云(混合云)。

小部分原有 IT 实力较为强劲的车企新势力以自建云(私有云)为主,仅外采部分针对图形数据的云计算和云存储服务,这种方式有利于车企掌握核心数据以及全流程算法技术能力,打造产品差异化。

公有云则完美解决了这一问题,不仅能提供强劲的算力,其数据管理能力更是毋庸置疑。这也导致车企近些年纷纷转向公有云。艾媒咨询数据显示,2020 年,公有云规模在 2019 年超过了私有云,成为中国云计算最主要的市场。

某汽车集团信息技术部 VP 表示,公司现在对公有云的采购规模连年大幅增长。「单是云存储这一块,2022 年的预算要比 2021 年增长了差不多 30%,云计算同比也增长了 26%。」

某汽车集团 IT 总监对此深表认同,他认为云厂商应该在 SaaS 层面,给企业提供更轻量化的研发场景,以使自己能专注到最核心的研发上面去。「比如把自动驾驶训练模型都准备好,让企业直接拿来即用。」

这一期待对云服务商提出十分高的要求,意味着后者不仅需要 ICT 能力,还要懂汽车,拥有专业的知识储备,并且能做到二者深度融合。

要解决这一痛点,需要汽车云服务商拥有提供或整合统一工具链的能力,打通上下游链路,帮助车企尽快跑通(数据驱动)Pipeline

《白皮书》认为,车企对云服务的需求已经从 IaaS 和 PaaS 层的「资源云」转向 SaaS 层的「能力云」,且不再满足云服务只针对场景中的单一业务,而是希望能纵向延伸至多项业务,解决「数据孤岛」和「业务断层」,单线打透形成体系化输出。

某汽车集团 IT 总监直言,选择汽车云服务供应商的考量指标之一就在于,能不能把底层耦合拆干净。「业务和业务之间的协作并不在于云的一体化,我们更看重的是云服务商能不能灵活地适配需求。」